报告时间:2026年1月14日(周三)下午 15:30-16:30

报告地点:苏州大学天赐庄校区精正楼306

报告人:王瑞华,海南比勒费尔德应用科学大学


报告摘要:

This talk concerns the explicit computation of the Beilinson–Bloch height of the canonical Gross–Schoen cycle for curves of genus 3. Using Zhang's decomposition of the height into finite and archimedean contributions, I carry out a complete numerical evaluation for a specific non-hyperelliptic plane quartic curve over Q with semistable reduction. The computation combines admissible invariants on polarized metrized graphs with Arakelov–theoretic and analytic calculations at the archimedean place. The resulting height is strictly positive, giving a concrete example of a non-vanishing Gross–Schoen cycle. To my knowledge, this is the first explicit computation in the non-hyperelliptic genus ≥3 case.


报告人简介:

王瑞华,海南比勒费尔德应用科学大学助理教授,研究方向为解析数论和算术代数几何,本硕毕业于山东大学,硕士导师为刘建亚院士,博士毕业于莱顿大学,导师为David Holmes和Robin de Jong。


邀请人:董自康