科研动态
学术讲座
现在位置: 首页  科研动态  学术讲座
  • 天元讲堂(11.30):东北华东地区拓扑学协作会议学术报告
  • 浏览量:10 发布人: 发布时间:2019-11-29
  • 学术报告1

    题目:Filling foliations and an application in dynamical system

    报告人:余斌(同济大学)

    时间:20191130日(星期六)09:5010:50

    地点:苏州大学本部精正楼306

    摘要:In this talk, we will introduce a combinatorial surgery (due to Thurston, Ghys, Fried) to build a new taut foliation from an old one when we do Dehn-filling. This surgery is powerful in foliation theory on 3-manifolds. Then we will introduce an application about it: use it as a main ingredient to classify non-transitive Anosov flows on Franks-Williams manifold. This is a joint work with Jiagang Yang.

      

    学术报告 2

    题目:超平面构型的和乐李代数

    报告人:刘晔(西交利物浦大学)

    时间:20191130日(星期六)11:1012:00

    地点:苏州大学本部精正楼306

    摘要:我们介绍超平面构型的和乐李代数的定义,以及与构型补空间拓扑、组合的关系。并重点研究纤维型构型的和乐李代数的结构,指出其与基本群结构的相似性。后者是与郭威力(北京化工大学)的合作研究。

      

    学术报告 3

    题目:来自广义构型空间的辫子

    报告人:吕志(复旦大学)

    时间:20191130日(星期六)13:3014:30

    地点:苏州大学本部精正楼二楼学术报告厅

    摘要:结合Artin的经典思想,我们考虑了来自广义构型空间的辫子,如此的辫子与通常的辫子有所区别。我们讨论了如此辫子的群结构,给出了同伦表达;尤其我们定义的轨道辫子的群与orbifold基本群有本质的关联。

      

    学术报告 4

    题目:On 3-submanifolds of $S^3$ which admit complete spanning curve systems

    报告人:李风玲(大连理工大学)

    时间:20191130日(星期六)14:5015:40

    地点:苏州大学本部精正楼二楼学术报告厅

    摘要:Let $M$ be a compact connected 3-submanifold of the 3-sphere $S^3$ with one boundary component $F$ such that there exists a collection of $n$ pairwise disjoint connected orientable surfaces $\mathcal S=\{S_1,\cdots, S_n\}$ properly embedded in $M$,$\partial{\mathcal S}=\{\partial S_1,\cdots, \partial S_n\}$ is a complete curve system on $F$. We call $\mathcal S$ a complete surface system for $M$, and $\partial \mathcal{S}$ a complete spanning curve system for $M$. In the present paper, we show that the equivalent classes of complete spanning curve systems for $M$ are unique, that is, any complete spanning curve system for $M$ is equivalent to $\partial \mathcal S$. As an application of the result, we show that the image of the natural homomorphism from the mapping class group ${\mathcal M}(M)$ to ${\mathcal M}(F)$ is a subgroup of the handlebody subgroup ${\mathcal H}_n$. This is joint work with Fengchun Lei and Yan Zhao.


苏州大学数学科学学院 Copyright 2016.All Rights Reserved. 管理后台
电话:0512-65112637 传真:0512-65112637  E-mail:sxxy@suda.edu.cn  地址:苏州市十梓街1号 邮编:215006 苏ICP备06032411号